home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Multimedia Differential Equations
/
Multimedia Differential Equations.ISO
/
diff
/
chapter7.4pa
< prev
next >
Wrap
Text File
|
1996-08-13
|
6KB
|
262 lines
9 4xìy»» + 4xy» + (3x-1)yè=è0
A)èèC¬ xî»ì [ 1 + 3/4 xè+ 9/80 xìè- ∙∙∙ ]
B)èèC¬ xî»ì [ 1 + 3/4 xè- 9/80 xìè- ∙∙∙ ]
C)èèC¬ xî»ì [ 1 - 3/4 xè+ 9/80 xìè- ∙∙∙ ]
D)èèC¬ xî»ì [ 1 - 3/4 xè- 9/80 xìè- ∙∙∙ ]
ü è Assume a solution ç ê form
èèèèèèèè ▄èèèèèè▄
y =èx¡èΣèa┬xⁿè =èΣèa┬xⁿó¡
èèèèn=0èèèèèn=0
where m can be an arbitrary real number, not just an ïteger.
èèDifferentiation yields
èèè▄
y» =èΣè(n+m)a┬xⁿó¡úî
èè n=0
èèè ▄
y»» =èΣè(n+m)(n+m-1)a┬xⁿó¡úì
èèèn=0
Substitute ïëè4xìy»» + 4xy» + (3x-1)yè=è0èë yield
èèèè ▄èèèèèèèèèèèèèèè▄
èè4xìèΣè(n+m)(n+m-1)a┬xⁿó¡úìè+ 4xèΣ (n+m)a┬xⁿó¡úî
èèèèn=0èèèèèèèèèèèèèèn=0
èèèèèèèè ▄
èèèè+ (3x-1) Σèa┬xⁿó¡è=è0
èèèèèèèèn=0
orè ▄èèèèèèèèèèèèè▄
èè Σè4(n+m)(n+m-1)a┬xⁿó¡è+èΣ 4(n+m)a┬xⁿó¡
èèn=0èèèèèèèèèèèèn=0
èèèè ▄èèèèèèèè▄
èèè+èΣè3a┬xⁿó¡óî -è Σèa┬xⁿó¡è =è0
èèèèn=0èèèèèèèn=0
As ê third sum's exponent is different from ê rest, it
will be re-ïdexed so that all exponents are ê same.
èè ▄èèèèèèèèèèèèè▄
èè Σè4(n+m)(n+m-1)a┬xⁿó¡è+èΣè4(n+m-1)a┬▀¬xⁿó¡
èèn=0èèèèèèèèèèèèn=0
èèèè ▄èèèèèèèèè▄
èèè+èΣè3a┬▀¬xⁿó¡óîè-èΣèa┬xⁿó¡è=è0
èèèèn=1èèèèèèèèn=0
As ê third sum starts at n = 1 while ê oêrs start at
n = 0, ê first term will be isolated å ê remaïïg
terms combïed ïë one sum.
0è=è[ 4m(m-1) + 4m - 1 ] a╠x¡
è ▄
+èΣè{ 4(n+m)(n+m-1)a┬ + 4(n+m-1)a┬ + 3a┬▀¬ - a┬ }xⁿó¡
èn=1
è For differential equation ë have a non-trivial solution,
ê coefficient ç a╠x¡ must be zero.èSettïg it ë zero
yields ê INDICIAL EQUATION
4m(m-1) + 4m - 1è=è0
orèèè4mì - 1è=è0
This facërs ë
(2m - 1)(2m + 1) = 0
The solutions are
m = -1/2, 1/2
èèIf eiêr ç êse two solutions ç ê ïdical equation,
are subsituted ïë ê assumed solution, ê first term ç
ê solution will be zero, so for m = 0 or 3 this
reduces ë
▄
Σ {è4(n+m)(n+m-1)a┬ + 4(n+m-1)a┬ + 3a┬▀¬ - a┬ }xⁿó¡è=è0
n=1
For this sum ë be zero, it is sufficient that every term ï
ê braces is zero.èSettïg each ë zero produces ê
RECURSION RELATION which for this example will be
èèè4(n+m)(n+m-1)a┬ + 4(n+m-1)a┬ + 3a┬▀¬ - a┬è=è0
As ê roots for m are distïct å DIFFER BY AN INTEGER,
this technique will only one solution will be produced by
this technique.èIt will come from substitutïg ê larger
solution, m = 1/2, back ïë ê recursion relation which is
èè 4(n+m)(n+m-1)a┬ + 4(n+m-1)a┬ + 3a┬▀¬ - a┬è=è0
ë yield
èè4(n+1/2)(n-1/2)a┬ + 4(n-1/2)a┬ + 3a┬▀¬ - a┬è= 0
orèè(2n+1)(2n-1)a┬ + 2(2n-1) + 3a┬▀¬ - a┬è=è0
Combïïg like terms å rearrangïg yields
èè[ (2n+1)(2n-1) + 2(2n-1) - 1 ]a┬è=è- 3 a┬▀¬
Rearrangïg
èèèèèèèèèèè3
èèèa┬è=è- ────────────── a┬▀¬èèèn ≥ 1
èèèèèèè (2n+3)(2n-1)-1èèè
The first few terms are
nèèèèè a┬
───èèèè ────
1èèè a¬ = -3/[5(1)-1] a╠ = -3/4 a╠
2èèè a½ = -3/[7(3)-1] a¬ = -3/20 a¬ = 9/80 a╠
Thus one solution is
èC¬ xî»ì [ 1 - 3/4 xè+ 9/80 xìè- ∙∙∙ ]
Ç B
10 xìy»» - 3xy» + (4-x)yè=è0
A)è C¬ xì [ 1 + 1/4 xè+ 1/36 xìè+ ∙∙∙ ]
B)è C¬ xì [ 1 + 1/4 xè- 1/36 xìè+ ∙∙∙ ]
C)è C¬ xì [ 1 - 1/4 xè+ 1/36 xìè+ ∙∙∙ ]
D)è C¬ xì [ 1 - 1/4 xè- 1/36 xìè+ ∙∙∙ ]
ü è Assume a solution ç ê form
èèèèèèèè ▄èèèèèè▄
y =èx¡èΣèa┬xⁿè =èΣèa┬xⁿó¡
èèèèn=0èèèèèn=0
where m can be an arbitrary real number, not just an ïteger.
èèDifferentiation yields
èèè▄
y» =èΣè(n+m)a┬xⁿó¡úî
èè n=0
èèè ▄
y»» =èΣè(n+m)(n+m-1)a┬xⁿó¡úì
èèèn=0
Substitute ïëèü è Assume a solution ç ê form
èèèèèèèè ▄èèèèèè▄
y =èx¡èΣèa┬xⁿè =èΣèa┬xⁿó¡
èèèèn=0èèèèèn=0
where m can be an arbitrary real number, not just an ïteger.
èèDifferentiation yields
èèè▄
y» =èΣè(n+m)a┬xⁿó¡úî
èè n=0
èèè ▄
y»» =èΣè(n+m)(n+m-1)a┬xⁿó¡úì
èèèn=0è
Substitutïgèxìy»» - 3xy» + (4-x)yè=è0èyields
èèèè▄èèèèèèèèèèèèèèè▄
èèxìèΣè(n+m)(n+m-1)a┬xⁿó¡úìè+ 5xèΣ (n+m)a┬xⁿó¡úî
èèè n=0èèèèèèèèèèèèèèn=0
èèèèèèèè ▄
èèèè+ (4-x) Σèa┬xⁿó¡è=è0
èèèèèèèèn=0
orè ▄èèèèèèèèèèèè ▄
èè Σè(n+m)(n+m-1)a┬xⁿó¡è-èΣ 3(n+m)a┬xⁿó¡
èèn=0èèèèèèèèèèè n=0
èèèè ▄èèèèèèèè▄
èèè+èΣè4a┬xⁿó¡ -è Σèa┬xⁿó¡óîè =è0
èèèèn=0èèèèèèèn=0
As ê fourth sum's exponent is different from ê rest, it
will be re-ïdexed so that all exponents are ê same.
èè ▄èèèèèèèèèèèè ▄
èè Σè(n+m)(n+m-1)a┬xⁿó¡è-èΣè3(n+m-1)a┬▀¬xⁿó¡
èèn=0èèèèèèèèèèè n=0
èèèè ▄èèèèèèè▄
èèè+èΣè4a┬xⁿó¡è-èΣèa┬▀¬xⁿó¡óîè=è0
èèèèn=0èèèèèèn=1
As ê fourth sum starts at n = 1 while ê oêrs start at
n = 0, ê first term will be isolated å ê remaïïg
terms combïed ïë one sum.
0è=è[ m(m-1) - 3m + 4 ] a╠x¡
è ▄
+èΣè{ (n+m)(n+m-1)a┬ - 3(n+m-1)a┬ + 4a┬ - a┬▀¬ }xⁿó¡
èn=1
è For differential equation ë have a non-trivial solution,
ê coefficient ç a╠x¡ must be zero.èSettïg it ë zero
yields ê INDICIAL EQUATION
m(m-1) - 3m + 4è=è0
orèèèmì - 4m + 4è=è0
This facërs ë
(m-2)ì = 0
The solutions are
m = 2, 2
èèIf êse two solutions ç ê ïdical equation are
subsituted ïë ê assumed solution, ê first term ç
ê solution will be zero, so for m = 2 this reduces ë
▄
Σ { (n+m)(n+m-1)a┬ - 3(n+m-1)a┬ + 4a┬ - a┬▀¬ }xⁿó¡è=è0
n=1
For this sum ë be zero, it is sufficient that every term ï
ê braces is zero.èSettïg each ë zero produces ê
RECURSION RELATION which for this example will be
èèè(n+m)(n+m-1)a┬ - 3(n+m-1)a┬ + 4a┬ - a┬▀¬è=è0
As ê roots for m are REPEATED, this technique will only one
solution will be produced by this technique.èIt will come
from substitutïg ê solution, m = 2, back ïë ê
recursion relation which is
èè (n+m)(n+m-1)a┬ - 3(n+m-1)a┬ + 4a┬ - a┬▀¬è=è0
ë yield
èè(n+2)(n+3)a┬ - 3(n+3)a┬ + 4a┬ - a┬▀¬è= 0
Combïïg like terms å rearrangïg yields
èè[ (n+3)(n-1) + 4 ]a┬è=è a┬▀¬
Rearrangïg
èèèèèèèèèè1
èèèa┬è=è────────────── a┬▀¬èèèn ≥ 1
èèèèèèè(n+3)(n-1)+4èèè
The first few terms are
nèèèèè a┬
───èèèè ────
1èèè a¬ = 1/[4(0)+4] a╠ = 1/4 a╠
2èèè a½ = 1/[5(1)+4] a¬ = 1/9 a¬ = 1/36 a╠
Thus one solution is
èC¬ xì [ 1 + 1/4 xè+ 1/36 xìè+ ∙∙∙ ]
Ç A